Characterizations of umbilic hypersurfaces in warped product manifolds
نویسندگان
چکیده
We consider the closed orientable hypersurfaces in a wide class of warped product manifolds, which include space forms, deSitter-Schwarzschild and Reissner-Nordström manifolds. By using an integral formula or Brendle’s Heintze-Karcher type inequality, we present some new characterizations umbilic hypersurfaces. These results can be viewed as generalizations classical Jellet-Liebmann theorem Alexandrov Euclidean space.
منابع مشابه
Closed Weingarten Hypersurfaces in Warped Product Manifolds
Given a compact Riemannian manifold M , we consider a warped product M̄ = I ×h M where I is an open interval in R. We suppose that the mean curvature of the fibers do not change sign. Given a positive differentiable function ψ in M̄ , we find a closed hypersurface Σ which is solution of an equation of the form F (B) = ψ, where B is the second fundamental form of Σ and F is a function satisfying c...
متن کاملCharacterizations of Twisted Product Manifolds to Be Warped Product Manifolds
In this paper, we give characterizations of a twisted product manifold to be a warped product manifold by imposing certain conditions on the Weyl conformal curvature tensor and the Weyl projective tensor. We also find similar results for multiply twisted product manifolds.
متن کاملWarped Product Submanifolds of Riemannian Product Manifolds
and Applied Analysis 3 where TX and NX are the tangential and normal components of FX, respectively, and for V ∈ T⊥M,
متن کاملWarped product submanifolds of cosymplectic manifolds
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a one dimensional manifold. Thus study of warped product submanifolds of cosymplectic manifolds is significant. In this paper we have proved results on the non-existence of warped product submanifolds of certain types in cosymplectic manifolds. M.S.C. 2000...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers of Mathematics in China
سال: 2021
ISSN: ['1673-3576', '1673-3452']
DOI: https://doi.org/10.1007/s11464-021-0938-1